
206 COMMUNICATIONS, J.  Pharm. Pharmac., 1975, 27, 206 

temperature responses to (+)-amphetamine injection on the lst, 12th and 20th days 
(Fig. 1). Brain noradrenaline and dopamine concentrations were 27 and 19% of 
control values in the 6-OH-DA-treated rats, the control values being 627153 and 
960k36 ng g-1 respectively. 

According to these results it would appear that (+)-amphetamine-induced hyper- 
thermia may be due to some central catecholaminergic mechanisms rather than 
peripheral mechanisms, because, as is clearly shown in Fig. 1,  the selective elimi- 
nation of central catecholamines by intraventricular 6-OH-DA facilitated the toler- 
ance development to the hyperthermic effect of (+)-amphetamine. However, we 
do not know which of these amines, noradrenaline or dopamine, plays a predominant 
role in the development of hyperthermia. Some workers have attributed the amphet- 
amine-induced hyperthermia to stimulation of dopaminergic receptors in the central 
nervous system in rats (Matsumato & Griffin, 1971) and rabbits (Hill & Horita, 1971). 
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The influence of desipramine and amitriptyline on the 
accumulation of [3H]noradrenaline and its two major 
metabolites formed from rH]tyrosine in the rat brain 

The tricyclic antidepressant drug desipramine, in contrast to amitriptyline, is 
a potent inhibitor of the neuronal uptake of noradrenaline into central noradrenergic 
neurons (Glowinski, Axelrod & Iversen, 1966; Giese, Ruther & Matussck, 1967; 
Carlsson, Corrodi & others, 1969 ; Schildkraut, Schanberg & others, 1967; Schildkraut, 
Draskoczy & others, 1971 ; Squires, 1974). It has also been shown, that desipramine 
produces a decreased accumulation of labelled noradrenaline synthesized from tyrosine 
without affecting the endogenous noradrenaline level (Nyback, Borzecki & Sedvall, 
1968; Schubert, Nyback & Sedvall, 1970; Nielsen, Eplov & Scheel-Kruger, 1974). 
Amitriptyline produces only a weak or no effect on noradrenaline accumulation from 
labelled tyrosine (Schubert & others, 1970). The present investigation was made to  
clarify the influence of desipramine and amitriptyline on the metabolism of brain 
[3H]noradrenaline (3H-NA) synthesized from intravenously or intraventricularly 
injected [3H]tyrosine. 
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Previously we have found that conjugates of the two neutral metabolites, 3-methoxy- 
4-hydroxyphenylglycol (MOPEG) and 3,4-dihydroxyphenylglycol (DOPEG), were 
both quantitatively the major metabolites of noradrenaline in the rat brain (Nielsen 
& others, 1974; Braestrup, Nielsen & Scheel-Kriiger, 1974). 

It has also been shown that alterations in noradrenergic nerve activity in the cns 
can be reflected in the level of endogenous MOPEG (Korf, Aghajanian & Roth, 1973; 
Walter & Eccleston, 1973). 

The present results were obtained according to a newly developed biochemical 
procedure which permits the measurement of labelled noradrenaline and its major 
metabolites 3H-MOPEG (free + conjugated), 3H-DOPEG (conjugated) in the rat 
brain after intravenous or intraventricular injection of [3H]tyrosine (Nielsen to be 
published). 

Male Wistar rats about 270 g were injected with either saline or a tricyclic anti- 
depressant drug subcutaneously 30 min before injection of [3H]tyrosine (50-53 Ci 
mmol-l) either intraventricularly (50 pCi in 15 p1 Merles solution) or intravenously 
(325 pCi in 150 pl saline). The rats were decapitated 2 h after the injections of 
[3H]tyrosine. The brains were homogenized in N acetic acid (Braestrup & others, 
1974; Nielsen & others, 1974). 3H-NA and [3H]dopamine were absorbed on alumina, 
eluted in 0.5 N acetic acid and separated on an Amberlite CG 120 column. The 
supernatant from the alumina was passed through an Amberlite CG 120 column at 
pH 2 for absorption of [3H]tyrosine. The effluent and washings from this column 
containing conjugated DOPEG and free + conjugated MOPEG were incubated with 
glusulase for hydrolysing. After overnight incubation, 3H-MOPEG and 3H-DOPEG 
were extracted into ethyl acetate (pH 7) and separated by thin-layer chromatography 
(t.1.c.) in the solvent system, chloroform-glacial acetic acid-water (2:2:1 by vol). 
3H-MOPEG was further separated from unknown labelled components by extraction 
from the cellulose MN 300 powder at RF 0.60 into methanol, and the methanol 
extract was then chromatographed in a second solvent system, n-butanol-methanol- 
N formic acid (3 : 1 : 1 by vol). 

The biochemical analyses (Table 1) showed that the pretreatment with desipramine 
(2.5 or 20 mg kg-l) leads to a decreased formation of 3H-NA and its two labelled 
metabolites MOPEG and DOPEG after the intravenous injection of [3H]tyrosine. 
This strong indication of inhibition of total brain noradrenaline synthesis was not 
found after a high dose of amitriptyline, 20 mg kg-l. 

Table 1. Efect of desipramine and amitriptyline on 3H-NA synthesis and metabolism 
[3Hltyrosine in rat brain. Saline or drugs were administered subcutaneously 
30 min before intravenously injected 3H-tyrosine (4-4 pg kg-l) . Animals 
were killed 2 h after [3H]tyrosine. Figure for saline treated animals represents 
d. min-l g-1 brain tissue s.e.m. (n), while values of drug-treated animals 
are denoted in percentage of paired control values (n). 

Treatment Dose mg kg-' SH-NA 3H-MOPEG 8 3H-DOPEG 0 3H-DA [3H]Tyrosine 
Desipramine 2.5 7 4 f 5  7 5 * 7  73 f 8 126 i 8 91 f 7 

6 3 f 1 1  1 3 1 i - 2 2  1 3 1 r t 9  Desipramine 20 6 7 f 6  6 6 f 6  

Amitriptyline 20 89 f 6 96 f 15 121 f 13 119 f 24 111 f 12 

Saline (values are absolute 3565 f 123 915 4 52 

(4) *** (4) ** (4) ** (4) * (3) 

(4) *** (4) *** (4) ** (4) (4) *** 
(4) (4) (4) (4) (4) 

in d. min-' g-l) (12) (1 1) (1 2) (8) (7) 
625 81 6930 f 348 57100 f 38 

~~ ~ ~~ ~~~ 

*P<0*05 ; **P<0.02; ***P <0*01 
SSH-MOPEG is the sum of free plus conjugated 3H-MOPEG; SH-DOPEG is conjugated 

aH-DOPEG. 
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Effect of desipramine and amitriptyline on 3H-NA synthesis and metabolism 
from [3H]tyrosine in rat brain. Saline or drugs were administered sub- 
cutaneously 30 min before intraventricular injection of [3H]tyrosine (50uCi). 
Animals were killed 2 h after [3H]tyrosine. Figures for saline treated animals 
represent d.  m i d  g-1 brain tissue f s.e.m. (n) while values of drug treated 
animals are denoted in percentage of paired control values (n). 

Treatment Dose mg kg-l 3H-NA 3H-MOPEG 6 3H-DOPEG 0 3H-DA [3H]Tyrosine 
Desipramine 2.5 90 f 8 7 2 & 7  6 1 + 7  1 1 2 3 ~ 9  117 rt 15  

(7) (7) ** (7) **  (7) (7) 

(6) ** (6) ** (6) *** (6) (6) 

(4) * (4) (4) (4) (4) 

(13) (13) (13) (12) (13) 

Desipramine 20 74 f 6 6 4 +  6 48 f 6 110 f 1 1  121 f 10 

Amitriptyline 10 86 + 6 104 f 7 108 f 7 102 f 27 82 f 7 

Saline 39400 + 1650 6165 f 330 7066 + 421 19400 f 1700 373000 i 21600 

~ 

*P<0.05; **P<O.Ol; ***P<O.Ol. 
ffH-MOPEG is the sum of free plus conjugated 3H-MOPEG; 3H-DOPEG is conjugated 

3H-DOPEG. 

A similar conclusion was obtained after the intraventricular injection of [3H]- 
tyrosine, since desipramine (2.5 or 20 mg kg-l), but not amitriptyline (10 rng kg-l) 
decreased the brain concentrations of 3H-MOPEG and 3H-DOPEG, (Table 2). 
However, the brain concentrations of 3H-NA showed less pronounced decreases after 
the intraventricular injections compared with the intravenous administration. 
Desipramine, 2.5 mg kg-l, therefore induced no significant decrease in 3H-NA, 
whereas at 20 mg kg-l it produced a significant (P < 0.01) decrease. 

The present results provide strong direct evidence that the secondary amine desi- 
pramine but not the tertiary amine amitriptyline decreases total brain synthesis of 
noradrenaline, since both 3H-NA and its major metabolites 3H-MOPEG and 3H- 
DOPEG were decreased after desipramine. 

This effect may be related to the induction of a negative feed-back mechanism 
induced by an increased activity of noradrenaline after uptake inhibition by desipra- 
mine (see also Nyback & others, 1968; Schubert & others, 1970). In support of this 
conclusion, we have found that clonidine, which directly activates central noradrena- 
line receptors, produces effects similar to those of desipramine on accumulation of 
labelled dopamine, noradrenaline, MOPEG and DOPEG after intraventricularly 
injected [3H]tyrosine in the rat brain. 

In treatments when desipramine was given before intraventricularly injected [3H]- 
tyrosine, there was a tendency for 3H-DOPEG, the catechol-deaminated noradrenaline 
metabolite to be more decreased than 3H-NA and "-MOPEG (Table 2) indicating 
that this hitherto neglected major metabolite of noradrenaline may provide valuable 
information on the mechanism by which drugs affect central noradrenergic trans- 
mission. 
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The composition of cetostearyl alcohol 

Cetostearyl alcohol is a material widely used in the pharmaceutical industry as a 
component of creams, ointments and emulsifying waxes. Variations in the behaviour 
of cetostearyl alcohol in production processes led to determination of its hydrophilic- 
lipophilic character by the method of Greenwald, Brown & Fineman (1956). 
Different batches, when titrated with water, in a benzene dioxane system gave different 
cloud points, presumably as a result of variable composition. 

Examination of the cetyl and stearyl alcohol contents by gas-liquid chromatography 
on a 5 ft, 5 %  OV17 column at 190", showed no correlation with the cloud point. 
However in many batches the total cetyl plus stearyl alcohol content amounted to 
only 80-85 % w/w of the total. Even if myristyl alcohol, another normal component, 
was included, the total was often still below 90%. 

The British Pharmacopoeia monograph for cetostearyl alcohol contains a number 
of limit tests which control the quantities of other classes of compounds which could 
be present. Fatty acids are controlled by titration with 0.1 N sodium hydroxide to a 
limit of 0.14% w/w calculated as stearic acid. Esters are controlled by the Saponifi- 
cation Value to a limit of less than 0.01% w/w in terms of methyl stearate. Un- 
saturated components are controlled by the Iodine Value to a limit of 3 %  w/w in 
terms of oleoyl alcohol. However in our experience of this determination this value 
rarely exceeds the equivalent of 1% w/w. Hydrocarbons are controlled gravi- 
metrically after a chromatographic separation on alumina ; the limit corresponds to 
1-5 % w/w. Hydrocarbons are frequently present in commercial material at levels 
exceeding 1 % w/w, however none of these components can account for the missing 
10 % of the total. 

Examination of the gas chromatographic traces used for the analysis of the cetyl 
and stearyl alcohols revealed a number of extra peaks. To improve the resolution 
of these compounds a 13 ft 9 %  OV 101 column was specially constructed and used 
with temperature programming from 160" at 6" min-' to 300" (Fig. 1). At higher 
sensitivity more components are detected. Peaks equivalent to more than 0.01 % 
w/w of the mixture account for approximately 99% of the total. Thirty-six batches 
from five different suppliers were examined by this means. Components were 
identified initially by comparison of the retention times of the parent compounds and 


